In Compacted Mathematics Grade 7, instruction should focus on three critical areas from

The content of this document is centered on the mathematics domains of (Grade K),
(Grades K-5);
(Grades 3-5);
(Grades K-5);
(Grades 6-7);
(Grades 6-8); (Grade 8), and the high school conceptual
categories of . Instruction in these domains and conceptual categories should be designed to expose students to experiences, which reflect the v

Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width?
b. Solve word problems leading to inequalities of the form or , where , , and are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.

8.EE. 7	Solve linear equations in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form , or results (where and are different numbers). b. Solve linear equations and inequalities with rational number coefficients, including those whose solutions require expanding expressions using the distributive property and collecting like terms.
7.G. 1	Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
7.G. 2	Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
7.G. 3	Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.
7.G. 4	Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.
7.G. 5	

$7 . S P .5$	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
7.SP.6	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability.

Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.
a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events.
7.SP. 7

The primary purpose of the

